使用SCALE分析单细胞ATAC-seq数据

SCALE全称是Single-Cell ATAC-seq analysis vie Latent feature Extraction, 从名字中就能知道这个软件是通过隐特征提取的方式分析单细胞ATAC-seq数据。

在文章中,作者从开发者的角度列出了目前的scATAC-seq分析软件,chromVAR, scABC, cisTopic, scVI,发现每个软件都有一定的不足之处,而从我们软件使用者的角度,其实可以考虑都试试这些工具。

SCALE结合了深度生成模型(Depp Generative Models)变分自动编码器框架(Variational Autoencoder, VAE)与概率高斯混合模型(Gaussian Mixture Model, GMM)去学习隐特征,用于准确地鉴定scATAC-seq数据中的特征。

文章通过一张图来解释了软件的工作机制:

SCALE框架

SCALE将sc-ATAC-seq的输入数据x(Cells-by-Peaks矩阵)建模成一个联合分布,p(x,z,c),c是GMM组件中对应的预定义的K个聚类,z是一个隐变量,是细胞在所有peak中实际可能的值,用于后续的聚类和可视化。z通过$z = \mu_z + \sigma_Z \times \epsilon$ 计算而得,公式里面的 $\mu_z$ $\sigma_z$ 是编码器网络从x中学习而得,$\epsilon$ 则是从 $\mathbb{N}(0,\mathbf{I})$ 抽样而成。

从公式中我们还可以发现z其实和GMM的c有关,所以p(x,z,c)也可以写成P(x|z)p(z|c)p(c),而p(c)是K个预定义聚类分布的离散概率分布,p(z|c)服从混合高斯分布,而p(x|z)则是服从多变量伯努利分布(multivartiable Bernoulli distribution), 通过解码者网络建模而成。

当然从一个软件使用者的角度而言,我们不会去关心代码,也不会关心原理,我们更关心的是这个工具能做什么。SCALE能做以下的分析

  • SCALE可以对隐特征聚类识别细胞类群
  • SCALE可以降噪,恢复缺失的peak
  • SCALE能够区分批次效应和生物学细胞类群之间的差异

软件安装

推荐使用conda的方式进行软件安装(我测试过了,运行没有问题)

第一步:创建一个环境,名字就是SCALE,并且启动该环境

1
2
conda create -n SCALE python=3.6 pytorch
conda activate SCALE

第二步:从GitHub上克隆该项目

1
git clone git://github.com/jsxlei/SCALE.git

第三步:安装SCALE

1
2
cd SCALE
python setup.py install

之后分析的时候,只需要通过conda activate SCALE就能启动分析环境。

考虑后续要交互的读取数据和可视化,那么建议再安装一个Jupyter

1
conda install jupyter

软件使用

SCALE支持两类输入文件:

  • count矩阵,行为peak,列为barcode
  • 10X输出文件: count.mtx.gz, peak.tsv, barcode.tsv

我们以官方提供的Forebrain数据集为例进行介绍,因为这个数据相对于另外一个数据集Mouse Atlas小多了。

我们在服务器上新建一个文件夹,用于存放从https://cloud.tsinghua.edu.cn/d/bda0332212154163a647/下载的数据

1
mkdir Forebrain

保证Forebrain有下载好的数据

1
2
$ ls Forebrain 
data.txt

之后运行程序

1
SCALE.py -d Forebrain/data.txt -k 8 --impute

软件运行步骤为:

  • 加载数据: Loading data
  • 模型训练: Training Model
  • 输出结果: Saving imputed data

其中模型训练这一步时间比较久,可以尝试用GPU加速(我是普通CPU服务器没有办法)。最终会在当前文件夹看到一个output文件夹,里面有如下内容:

  • imputed_data.txt: 每个细胞在每个特征的推断值,建议用--binary保存二进制格式
  • model.pt: 用于重复结果的模型文件,--pretrain参数能够读取该模型
  • feature.txt: 每个细胞的隐特征,用于聚类和可视化
  • cluster_assignments.txt: 两列,barcode和所属类群
  • tsne.txt, tsne.pdf: tSNE的坐标和PDF文件,坐标文件可以导入到R语言进行可视化

上面是命令行部分,下面则是Python环境进行交互式操作,输入jupyter notebook,之后在网页上打开

首先是导入各种Python库

1
2
3
4
5
6
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
import seaborn as sns
from scale.plot import plot_embedding, plot_heatmap

然后加载分析结果,包括聚类信息和特征信息

1
2
y = pd.read_csv('output/cluster_assignments.txt', sep='\t', index_col=0, header=None)[1].values
feature = pd.read_csv('output/feature.txt', sep='\t', index_col=0, header=None)

通过热图展示不同聚类细胞之间的差异图

1
2
3
4
5
plot_heatmap(feature.T, y, 
figsize=(8, 3), cmap='RdBu_r', vmax=8, vmin=-8, center=0,
ylabel='Feature dimension', yticklabels=np.arange(10)+1,
cax_title='Feature value', legend_font=6, ncol=1,
bbox_to_anchor=(1.1, 1.1), position=(0.92, 0.15, .08, .04))

heatmap

如果要矫正批次效应,可以通过根据feature的heatmap,去掉和batch相关的feature来实现

我们可以展示SCALE对原始数据纠正后的值(imputed data), 该结果也能提高chromVAR鉴定motif的效果

1
imputed = pd.read_csv('output/imputed_data.txt', sep='\t', index_col=0)

展示聚类特异性的peak, 分析由mat_specificity_scorecluster_specific完成

1
2
3
4
5
6
7
8
from scale.specifity import cluster_specific, mat_specificity_score

score_mat = mat_specificity_score(imputed, y)
peak_index, peak_labels = cluster_specific(score_mat, np.unique(y), top=200)

plot_heatmap(imputed.iloc[peak_index], y=y, row_labels=peak_labels, ncol=3, cmap='Reds',
vmax=1, row_cluster=False, legend_font=6, cax_title='Peak Value',
figsize=(8, 10), bbox_to_anchor=(0.4, 1.2), position=(0.8, 0.76, 0.1, 0.015))

聚类特异性peak

参数介绍

通过SCALE.py -h可以输出SCALE的所有可用参数

  • -d/--dataset: 单个文件矩阵应该指定文件路径,10X输出的多个文件则是文件目录
  • -k: 设定输出结果的聚类数
  • -o: 输出文件路径
  • --pretrain: 读取之前训练的模型
  • --lr: 修改起始学习速率, 默认是0.002,和模型训练有关
  • --batch_size: 批处理大小, 默认就行,不需要修改(和批次效应处理无关)
  • -g GPU: 选择GPU设备数目,非GPU服务器用不到
  • --seed: 初始随机数种子,通常在遇到nan缺失时考虑修改
  • -encode_dim, -decode_dim: 编码器和解码器的维度,通常也不需要修改
  • -latent 隐藏层维度
  • --low, --high: 过滤低质量的peak, 即出现比例高于或者低于某个阈值的peak,默认是0.01和0.9。作者推荐保留1万-3万的peak用于SCALE分析。如果数据质量很高,且peak数不多于10万,那么可以不过滤。
  • --min_peaks: 过滤低质量细胞,如果该细胞的peak低于阈值
  • log_transform: log2(x+1)的变换
  • --max_iter: 最大迭代数,默认是30000, 可以观察损失收敛的情况来修改,也就是训练模型这一步输出的信息
  • -weight_decay: 没有说明
  • --impute: 保存推断数据,默认开启
  • --binary: 推荐加上该参数,减少imputed data占用空间
  • --no_tsne: 不需要保存t-SNE结果
  • --reference: 参考细胞类型
  • -t: 如果输出矩阵是列为peak,行为barcode,用该参数进行转置

对于使用者而言,我们一般只用修改-k更改最后的聚类数,--low, --high, ---min_peaks来对原始数据进行过滤,以及加上--binary节约空间。

假如在训练模型阶段,发现输出信息为loss=nan recon_loss=nan kl_loss=nan,十有八九最终会报错退出, 可以如下的参数调整

  • 更改--seed
  • 用更加严格的条件过滤peak,例如-x 0.04-x 0.06
  • 降低初始的学习速率,--lr 0.0002