一个很大的矩阵, 320127 行, 8189列,假如用一个全为0的普通矩阵来存储,需要用到9.8Gb
```r
cols <- 8189
rows <- 320127
mat <- matrix(data = 0, nrow=320127, ncol = 8189)
print(object.size(mat), unit="GB")
# 19.5 Gb
mat <- matrix(data = 0L, nrow=320127, ncol = 8189)
print(object.size(mat), unit="GB")
# 9.8 Gb这里的0其实也要区分
```
这里的`0L`表示数据类型是`integer`,默认是`numeric`. 这两者最大的区别在于,当你用`320127L * 8189L`,你会得到一个NA,而`320127 * 8189`不会
如果用稀疏矩阵保存的话
```r
mat <- Matrix(data = 0L, nrow=320127, ncol = 8189, sparse = TRUE)
print(object.size(mat), unit="GB")
#0 Gb
dim(mat)
#[1] 320127 8189
```
虽然行列数一样,但是稀疏矩阵几乎不占用任何内存。而且普通矩阵支持的运算,比如说求行和,求列和,提取元素的操作,在稀疏矩阵矩阵也是可以的,只不过会多花一点点时间而已。同时还有很多R包支持稀疏矩阵,比如说`glmnet`,一个做lasso回归的R包。
虽然看起来稀疏矩阵很美好,但是在R语言中那么大的稀疏矩阵的部分操作会出错
```r
> mat2 <- mat + 1
Error in asMethod(object) :
Cholmod error 'problem too large' at file ../Core/cholmod_dense.c, line 105
```
即便是我想把它用`as.matrix`转回普通矩阵,它也报错了
```r
> mat3 <- Matrix::as.matrix(mat)
Error in asMethod(object) :
Cholmod error 'problem too large' at file ../Core/cholmod_dense.c, line 105
```
既然现成的`as.matrix`无法处理,那怎么办呢?最简单粗暴的方法就是新建一个普通矩阵,然后对稀疏矩阵进行遍历,将稀疏矩阵的值挨个放回到的普通矩阵上。
```r
mat2 <- matrix(data = 0, nrow=320127, ncol = 8189)
for (i in seq_len(nrow(mat))){
for (j in seq_len(ncol(mat))){
mat2[i,j] <- mat[i,j]
}
}
```
那么这大概要多少时间呢?反正我的电脑跑了2个小时也没有跑完,所以你也别测试了。
那有没有办法可以加速呢?加速的方法就是减少for循环的次数,因为我们是一个稀疏矩阵,大部分的空间都是0,我们只需要将不为0的部分赋值给新矩阵即可。
这需要我们去了解下稀疏矩阵的数据结构
```r
> str(mat)
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int(0)
..@ p : int [1:8190] 0 0 0 0 0 0 0 0 0 0 ...
..@ Dim : int [1:2] 320127 8189
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : num(0)
..@ factors : list()
```
`@Dim`记录矩阵的维度信息, `@Dimnames`记录行名和列名, `@x`记录不为0的数值。`@i`记录不为0的行索引,和`@x`对应,这里全为0,所以不记录。`@p`比较复杂,并不是简单的记录不为0值的列索引,看文档也不知道是啥,不过通过检索可以找到它和不为0值的列索引的换算关系。
因此代码优化为
```r
row_pos <- mat@i+1
col_pos <- findInterval(seq(mat@x)-1,mat@p[-1])+1
val <- mat@x
for (i in seq_along(val)){
tmp[row_pos[i],col_pos[i]] <- val[i]
}
```
可以将其封装为一个函数
```r
as_matrix <- function(mat){
tmp <- matrix(data=0L, nrow = mat@Dim[1], ncol = mat@Dim[2])
row_pos <- mat@i+1
col_pos <- findInterval(seq(mat@x)-1,mat@p[-1])+1
val <- mat@x
for (i in seq_along(val)){
tmp[row_pos[i],col_pos[i]] <- val[i]
}
row.names(tmp) <- mat@Dimnames[[1]]
colnames(tmp) <- mat@Dimnames[[2]]
return(tmp)
}
```
如果速度还需要提高,那么可能就需要Rcpp上场了. 我参考着<http://adv-r.had.co.nz/Rcpp.html>写了一个简单的代码
```r
Rcpp::sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
IntegerMatrix asMatrix(NumericVector rp,
NumericVector cp,
NumericVector z,
int nrows,
int ncols){
int k = z.size() ;
IntegerMatrix mat(nrows, ncols);
for (int i = 0; i < k; i++){
mat(rp[i],cp[i]) = z[i];
}
return mat;
}
' )
as_matrix <- function(mat){
row_pos <- mat@i
col_pos <- findInterval(seq(mat@x)-1,mat@p[-1])
tmp <- asMatrix(rp = row_pos, cp = col_pos, z = mat@x,
nrows = mat@Dim[1], ncols = mat@Dim[2])
row.names(tmp) <- mat@Dimnames[[1]]
colnames(tmp) <- mat@Dimnames[[2]]
return(tmp)
}
```
如果之前的矩阵有78945836个元素,`system.time`显示只需要40s。
R语言的稀疏矩阵学习记录